주메뉴 바로가기 본문내용 바로가기 사이트정보 바로가기

논문특허 1차년도

제목 - 설명
  • [논문] Statistical models and computational tools for predicting complex traits and diseases

    • 등록일
      2022.04.28
    • 조회수
      259

•연구자: 정보통계보험수리학과 정원일

 

•발표일: 2021.12.31

 

•DOI: https://doi.org/10.5808/gi.21053

 

•Wonil Chung, Genomics and Informatics (Q2). Volume 19, Issue4, (2021)

 

•Abstract
Predicting individual traits and diseases from genetic variants is critical to fulfilling the promise of personalized medicine. The genetic variants from genome-wide association studies (GWAS), including variants well below GWAS significance, can be aggregated into highly significant predictions across a wide range of complex traits and diseases. The recent arrival of large-sample public biobanks enables highly accurate polygenic predictions based on genetic variants across the whole genome. Various statistical methodologies and diverse computational tools have been introduced and developed to computed the polygenic risk score (PRS) more accurately. However, many researchers utilize PRS tools without a thorough understanding of the underlying model and how to specify the parameters for the best performance. It is advantageous to study the statistical models implemented in computational tools for PRS estimation and the formulas of parameters to be specified. Here, we review a variety of recent statistical methodologies and computational tools for PRS computation.

상단으로 이동